搜索
行业分类
  • 有机化工
    新技术
    环氧丙烷
    环氧氯丙烷
    环氧环己烷
    甲基丙烯酸甲酯(MMA)
    丙烯酸甲酯
    甲基丙烯腈
    DMF
    2,6-萘二甲酸
    1,3-丙二醇
    氯化石蜡
    己二腈
    醋酸
    醋酸甲酯
    四氢呋喃
    苯胺
    苯酚
    丙烷脱氢
    HPPO
    丁辛醇
    DMT
    乙二醇
    新戊二醇
    异丁烯
    己二胺
    碳酸二甲酯
    顺酐
    醋酸乙烯
    环氧乙烷
    丁辛醇
    己二酸
    丙烯腈
    对二甲苯
    己内酰胺
    乙苯
    异丙醇
    丙烷脱氢
    氯化石蜡
    乙醇胺
    C4
    环己烯
    电石乙炔
    乙烯法氯乙烯
    焦炉煤气甲醇
    1,4-丁二醇
    醋酐
    甲醛
    醋酸丁酯
    1,6-己二醇
    丙烯酸
    丁二 烯
    对二甲苯
    丁酸丁酯
    C4,C5
    叔丁醇
    甲醇
    苯乙烯
    α-烯烃
  • 无机化工
    新技术
    双氧水
    硫磺
    HCN
    Fe3O4
    γ-Al2O3
    二氧化锰
    勃姆石
    α‑Al2O3
    碱式碳酸钕
    氧化钕
    CS2
    氟化钾
    过碳酸钠
    过碳酰胺
    氯化钾
    次氯酸钠
    离子膜烧碱
    氢氧化钾
    元明粉
    大颗粒尿素
    氢氧化镁
    磷酸二氢钾
    氧化铬绿
    多聚磷酸铵
    合成氨
    氢氧化铝
    白炭黑
    重铬酸钠
    硫酸钾
  • 新材料
    新技术
    高乙烯基聚丁二烯橡胶
    PEN
    PTT
    低分子量聚苯醚
    PPS
    芳纶
    碳纤维
    锂电池电极材料
    聚碳酸酯
    PC/ABS
    TPV
    聚丁二烯橡胶
    聚酰亚胺
    电子化学品
    聚甲醛
    脂肪族环氧树脂
    碳酸乙烯酯
    碳酸丙烯酯
    聚氨酯
    聚羧酸减水剂
    尼龙1212
    氯化聚氯乙烯
    糊状PVC
    尼龙11合金
    本体ABS
    聚四氟乙烯
    聚苯醚
    球形石蜡
    纳米活性碳酸钙
    碱式硫酸镁晶须
    高吸水性树脂
    六氟磷酸锂
    炭微纳米球
    磷酸铁锂
    锂电池隔膜
    聚醚醚酮
    SIBS
    纳米复合处理剂
    碳酸酯
    聚酰胺11
    杜仲胶
    硅烷伴侣
    PC
    对二甲苯环二体
    热致性液晶聚合物
    电子级硫酸
    丁苯透明抗冲树脂
    PA11
    途改性 PBT
    改性聚酰胺(PA)系
    改性聚碳酸酯(PC)
    改性 PET
    改性聚氯乙烯(PVC)
    的改性聚甲醛(POM)
    改性的聚丙烯
    能改性聚苯乙烯-丁二烯-丙烯晴(ABS)
    低能耗简便  PET 工业废料增粘回收
    杂环芳纶
    溶聚丁苯橡胶(SSBR)
    1 万吨聚苯硫醚(PPS)
    丁苯透明抗冲树脂(S-透明抗冲树脂)
  • 降解塑料
    新技术
    PLA
    PBS
    PBAT
    PSM
    PCL
    PHA
    PEF
    PPC
    PGA
  • 生物化工
    新技术
    2-甲基呋喃
    5-羟甲基糠醛
    糠醇
    四氢糠醇
    三氯蔗糖
    甲醇蛋白
    乳酸酯
    L-乳酸/D-乳酸
    生物柴油
    生物胶
    甲壳素/壳聚糖
    生物传感器
    D-泛酸
  • 医药化工
    新技术
    维生素E
    牛磺熊去氧胆酸
    哌啶
    叶黄素
    左旋肉碱
    D-泛酸
    2,3-二氯吡啶
    (R)-邻氯扁桃酸甲酯
    (R)-硫辛酸
    甜菊糖甙
    6-APA
    雷美替胺
    对氨基苯酚
    更多
  • 精细化工
    新技术
    N-烃基吡咯烷酮
    环十二碳三烯
    1,2,4-丁三醇
    蛋氨酸
    丁二酸
    硝酸异辛酯
    假紫罗兰酮
    4-(6-羟基己氧基)苯酚
    苯酞
    苯基苄胺
    香兰素
    γ-戊内脂
    四丁基锡
    茴香醛
    异戊烯醇
    异戊烯醛
    1,4-萘醌
    1,6-己二醇
    α-萘酚
    肿胺
    叔胺
    对羟基苯丙酸
    1,5-戊二胺
    糠醇
    3,4-二甲基苯甲醛
    二丙基庚醇
    异壬醇
    正异丁醛
    二甲基二硫
    二甲基亚砜
    1,5-戊二胺
    三聚甲醛
    1,6-己二醇
    γ-丁内酯
    甲缩醛
    DOTP
    偏苯三酸酐
    醋酸仲丁酯
    长直链烷基苯
    二丙二醇
    氯化胆碱
    双乙酸钠
    过氧化甲乙酮(MEKPO)
    四乙酰乙二胺(TAED)
    氯化亚砜
    烷基糖苷
    乙二醛
    脲醛胶
    氯乙酸
    羟乙基纤维素(HEC)
    丙醛
    烷基蒽醌
    2-甲基呋喃
    电子化学品
    甲缩醛
    三羟甲基丙烷
    1,3-环己二酮
    叔丁酚
    烷基酚
    叔丁醇
    对二甲苯环二体
    印制线路板用的免清洗助焊剂
    密胺微胶囊聚磷酸铵(APP)
    超纯微电子级四甲基氢氧化铵
    β-烟酰胺单核苷酸
  • 新能源
    新技术
    制氢
    储氢
    运氢
    加氢
    氢燃料电池
    甲醇水制氢
  • 环保及水处理
    新技术
    印染
    纺织
    造纸
    电厂
    化工
    食品
    CO2减排
    脱硝
    脱硫
    VOCS
    海水淡化
    水处理膜
    土壤修复
    河道湖泊
    聚丙烯酰胺类高分子絮凝剂
  • 煤化工
    新技术
    聚甲氧基二甲醚
    提纯DMC
    甲缩醛
    煤制甲醇
    煤制乙二醇
    煤焦油加氢
    煤制氢
    二甲醚
    甲醇制油
    低压煤制甲醇
    合成气
    草酰胺
  • 其他
    PTA优化
    成套装备
    β-淀粉酶
    赤藓糖醇
    增稠剂
    瓜尔胶
新闻详情

进军碳中和,“液态阳光”引热议

发表时间:2022-01-20 11:35


作为一种可再生的绿色液态燃料,“液态阳光”发展日益受到各国重视,被视为解决二氧化碳减排甚至达到碳中和的理想途径。

所谓“液态阳光”,是将利用太阳能等可再生能源产生的电力电解水生产氢,并将二氧化碳与氢合成为甲醇等便于储运的绿色液态燃料。

“‘液态阳光’是真正利用可再生能源资源化利用二氧化碳,实现规模化低碳乃至无碳能源的路径。”2020年12月14日,中国科学院院士、中国科学院大连化学物理研究所研究员李灿在第九届全球能源安全智库论坛上表示。

值得注意的是,全球第一个规模化太阳燃料合成示范项目已于2020年1月在兰州正式投入运营,迈出了我国利用可再生能源大规模生产绿色甲醇的第一步,也意味着我国拉开了向“液态阳光”甲醇经济转型的“大幕”。

能源系统碳中和

“液态阳光”被寄予厚望

“我国提出了将在2030年前实现碳达峰,2060年前实现碳中和的目标。但与此同时,我国是世界上最大的能源生产国和消费国,要让这样一个以碳基能源为基础的超大能源系统实现碳达峰、碳中和,是一项艰巨的系统性工程。”中国社会科学院国际法研究所科研外事处处长廖凡在论坛上指出。

在李灿看来,富煤、贫油、少气是我国的能源资源禀赋特征,在我国消费结构中,化石能源占比超84%,超70%的石油资源仍依赖进口,想要在10年时间内实现碳达峰,30年时间内实现碳中和,除了从植物自然光合作用、海洋吸收、节能降耗外,发展可再生能源、提高非化石能源使用比例是更为重要的途径。

“尤其要注意发展‘液态阳光’技术,这是一条发展可再生能源,实现规模化低碳乃至无碳能源,回归地球生态平衡的重要路径,为实现碳中和提供可行技术方案。” 李灿认为。

相关测算显示,1吨甲醇可转化1.375吨二氧化碳。按照我国2020年甲醇年产能9358万吨计算,每年的甲醇产能可有望转化上亿吨二氧化碳;如果用可再生能源合成的“液态阳光”甲醇规模化替代汽油,那么每年则可实现减排二氧化碳超10亿吨,与我国植树造林减排二氧化碳的最大值相当。

一举多得

助力解决可再生能源间歇性难题

我国能源需求潜力巨大,导致二氧化碳减排任务艰巨。利用可再生能源替代化石燃料、保障液态燃料供给,实现低碳经济,是关系我国能源安全及经济可持续发展的重要课题。

“液态阳光”不仅是太阳能大规模经济利用的关键技术和发展方向,还是化学储能的一种新形式,可帮助解决可再生能源间歇性难题。

“‘液态阳光’是通过突破高效、低成本、长寿命规模化的电催化分解水制氢技术,制取甲醇,而氢能与甲醇均是稳定可长期储存的能源。” 在李灿看来,甲醇既是理想的化学储氢分子,可帮助解决当前氢能产业大规模发展面临的储运与加注掣肘。同时,“液态阳光”技术应用还有另一层要义,便是解决边远地区的可再生能源及弃电问题,将是除(特)高压输电之外的另一条规模化输送能源的途径。

从兰州新区建成投运的我国首个千吨级液态太阳燃料合成示范项目看,该技术路径已经具备可行性。

应用规模初具

呼吁政策鼓励绿色甲醇发展

“液态阳光”甲醇不仅是一种绿色液态燃料,还是一种重要的绿色化工原料。

李灿认为,“液态阳光”的大规模使用,将有助于建立新型绿色低碳、高效的能源系统,促进我国向绿色甲醇经济转型发展。特别是在我国强化碳减排的当下,“液态阳光”有望迎来爆发式发展。

我国拥有全球最大的甲醇市场。在能源化应用方面,当前,甲醇作为新型燃料,在餐饮、锅炉、采暖、交通等领域的应用市场已开始逐渐形成。

“液态阳光”甲醇作为绿色氢能载体,可解决氢能的储运难题,与此同时,还可使燃料电池汽车全链条绿色化,助力交通领域实现深度脱碳。

谈及未来甲醇发展,原机械工业部部长何光远建议,我国应将甲醇燃料作为新兴能源纳入国家能源体系,统筹协调各有关职能部门,出台政策性推广应用文件。“一要明确甲醇燃料推广应用全流程涉及的管理部门职责,以政策支持为抓手,明确职责,引导市场机制;二要鼓励坚持创新科技研究;三要统筹规范指导,发挥行业积极性,推进我国甲醇燃料应用。”

6chem.com技术工艺包:

电厂,水泥厂,钢厂等碳中和解决方案:

(1)CO2二氧化碳捕获技术(10万吨/年,30万吨/年);

(2)电解水制氢技术(10万吨/年,30万吨/年)

(3)CO2二氧化碳加氢制甲醇技术工艺包(10万吨/年,30万吨/年);

新能源汽车锂电池电解液解决方案:

(1)尿素甲醇法碳酸二甲酯(DMC) 技术(含工艺包,含设计,设备);

(2)CO2二氧化碳环氧乙烷酯化制备碳酸二甲酯(DMC)技术

(3)碳酸二甲酯(DMC)提纯电子级碳酸二甲酯(DMC)技术;

可降解塑料解决方案:

(1)5万吨/年顺酐加氢制备丁二酸技术(含工艺包,含设计);

(2)正丁烷制备顺酐技术(含工艺包,含设计);

(3)顺酐加氢制备1,4-丁二醇技术(含工艺包,含设计);

(4)30万吨/年PBS/PBAT工业化成熟技术(含工艺包,含设计,设备);


分享到: